Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe 3 with strain-controlled Ising order

  • 1.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Wadley, P. et al. Present polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).

    CAS 
    Article 

    Google Scholar 

  • three.

    Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

    Article 
    CAS 

    Google Scholar 

  • four.

    Cheong, S.-W., Fiebig, M., Wu, W., Chapon, L. & Kiryukhin, V. Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater. 5, three (2020).

    Article 

    Google Scholar 

  • 5.

    Nair, N. L. et al. Electrical switching in a magnetically intercalated transition metallic dichalcogenide. Nat. Mater. 19, 153–157 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal all the way down to the monolayer restrict. Nature 546, 270–273 (2017).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS 
    Article 

    Google Scholar 

  • eight.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional FethreeGeTe2. Nature 563, 94–99 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically skinny FethreeGeTe2. Nat. Mater. 17, 778–782 (2018).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Thiel, L. et al. Probing magnetism in 2D supplies on the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Chen, W. et al. Direct statement of van der Waals stacking dependent interlayer magnetism. Science 366, 983–987 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Track, T. et al. Large tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators through electron tunneling. Science 360, 1218–1222 (2018).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Wang, Z. et al. Very giant tunneling magnetoresistance in layered magnetic semiconductor CrIthree. Nat. Commun. 9, 2516 (2018).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Huang, B. et al. Electrical management of 2D magnetism in bilayer CrIthree. Nat. Nanotechnol. 13, 544–548 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Jiang, S., Li, L., Wang, Z., Mak, Ok. F. & Shan, J. Controlling magnetism in 2D CrIthree by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Gibertini, M., Koperski, M., Morpurgo, A. & Novoselov, Ok. Magnetic 2D supplies and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Lengthy, G. et al. Persistence of magnetism in atomically skinny MnPSthree crystals. Nano Lett. 20, 2452–2459 (2020).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Mak, Ok. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic supplies. Nat. Rev. Phys. 1, 646–661 (2019).

    Article 

    Google Scholar 

  • 20.

    Huang, B. et al. Emergent phenomena and proximity results in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Lee, J.-U. et al. Ising-type magnetic ordering in atomically skinny FePSthree. Nano Lett. 16, 7433–7438 (2016).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Wang, X. et al. Raman spectroscopy of atomically skinny two-dimensional magnetic iron phosphorus trisulfide (FePSthree) crystals. 2D Mater. three, 031009 (2016).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Kim, Ok. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPSthree. Nat. Commun. 10, 345 (2019).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Vaclavkova, D. et al. Magnetoelastic interplay within the two-dimensional magnetic materials MnPSthree studied by first rules calculations and Raman experiments. 2D Mater. 7, 035030 (2020).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic technology as a instrument for finding out digital and magnetic buildings of crystals. J. Decide. Soc. Am. B 22, 96–118 (2005).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Chu, H. et al. Linear magnetoelectric section in ultrathin MnPSthree probed by optical second harmonic technology. Phys. Rev. Lett. 124, 027601 (2020).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Solar, Z. et al. Large nonreciprocal second-harmonic technology from antiferromagnetic bilayer CrIthree. Nature 572, 497–501 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Wiedenmann, A., Rossat-Mignod, J., Louisy, A., Brec, R. & Rouxel, J. Neutron diffraction examine of the layered compounds MnPSethree and FePSethree. Stable State Commun. 40, 1067–1072 (1981).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Oshikawa, M. Ordered section and scaling in Zn fashions and the three-state antiferromagnetic Potts mannequin in three dimensions. Phys. Rev. B 61, 3430 (2000).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Lou, J., Sandvik, A. W. & Balents, L. Emergence of U(1) symmetry within the 3D XY mannequin with Zq anisotropy. Phys. Rev. Lett. 99, 207203 (2007).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Cheong, S.-W. SOS: symmetry-operational similarity. npj Quantum Mater. four, 53 (2019).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Wildes, A., Roessli, B., Lebech, B. & Godfrey, Ok. Spin waves and the crucial behaviour of the magnetization in MnPSthree. J. Phys. Condens. Matter. 10, 6417 (1998).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Wildes, A., Rule, Ok. C., Bewley, R., Enderle, M. & Hicks, T. J. The magnon dynamics and spin alternate parameters of FePSthree. J. Phys. Condens. Matter. 24, 416004 (2012).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Wildes, A. R. et al. Magnetic construction of the quasi-two-dimensional antiferromagnet NiPSthree. Phys. Rev. B. 92, 224408 (2015).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Ressouche, E. et al. Magnetoelectric MnPSthree as a candidate for ferrotoroidicity. Phys. Rev. B. 82, 100408 (2010).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Lançon, D. et al. Magnetic construction and magnon dynamics of the quasi-two-dimensional antiferromagnet FePSthree. Phys. Rev. B. 94, 214407 (2016).

    Article 

    Google Scholar 

  • 37.

    Jeevanandam, P. & Vasudevan, S. Magnetism in MnPSethree: a layered 3d5 antiferromagnet with unusually giant XY anisotropy. J. Phys. Condens. Matter. 11, 3563 (1999).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPSthree. Nature 583, 785–789 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Sa, D., Valenti, R. & Gros, C. A generalized Ginzburg-Landau method to second harmonic technology. Eur. Phys. J. B 14, 301–305 (2000).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley diploma of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Zhao, M. et al. Atomically phase-matched second-harmonic technology in a 2D crystal. Gentle Sci. Appl. 5, e16131–e16131 (2016).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into synthetic lattices. Science 367, 903–906 (2020).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Liu, Z. et al. Pressure and construction heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    Article 

    Google Scholar 

  • 46.

    Zhang, Q. et al. Pressure rest of monolayer WS2 on plastic substrate. Adv. Funct. Mater. 26, 8707–8714 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Chen, X. et al. Electrical subject management of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Fiebig, M. Revival of the magnetoelectric impact. J. Phys. D Appl. Phys. 38, R123 (2005).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Mutch, J. et al. Proof for a strain-tuned topological section transition in ZrTe5. Sci. Adv. 5, eaav9771 (2019).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Otrokov, M. M. et al. Prediction and statement of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    CAS 
    Article 

    Google Scholar 

  • Supply

    Leave a Comment