Nanomechanical topological insulators with an auxiliary orbital degree of freedom

  • 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Corridor impact and topological section transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS 
    Article 

    Google Scholar 

  • three.

    Wu, L.-H. & Hu, X. Scheme for reaching a topological photonic crystal by utilizing dielectric materials. Phys. Rev. Lett. 114, 223901 (2015).

    Article 

    Google Scholar 

  • four.

    Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ma, J., Xi, X. & Solar, X. Topological photonic built-in circuits primarily based on valley kink states. Laser Photon. Rev. 13, 1900087 (2019).

    CAS 
    Article 

    Google Scholar 

  • eight.

    He, C. et al. Acoustic topological insulator and sturdy one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article 

    Google Scholar 

  • 10.

    He, H. et al. Topological adverse refraction of floor acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Zhang, X. et al. Topological sound. Commun. Phys. 1, 97 (2018).

    Article 

    Google Scholar 

  • 12.

    Lu, J. et al. Statement of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical techniques. Nat. Rev. Phys. 1, 281–294 (2019).

    Article 

    Google Scholar 

  • 14.

    Serra-Garcia, M. et al. Statement of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light-weight. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  • 16.

    Brendel, C., Peano, V., Painter, O. J. & Marquardt, F. Pseudomagnetic fields for sound on the nanoscale. Proc. Natl Acad. Sci. USA 114, E3390–E3395 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Foehr, A., Bilal, O. R., Huber, S. D. & Daraio, C. Spiral-based phononic plates: from wave beaming to topological insulators. Phys. Rev. Lett. 120, 205501 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Ozawa, T. & Worth, H. M. Topological quantum matter in artificial dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article 

    Google Scholar 

  • 19.

    Cha, J., Kim, Okay. W. & Daraio, C. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature 564, 229–233 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Süsstrunk, R. & Huber, S. D. Statement of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article 

    Google Scholar 

  • 21.

    Ju, L. et al. Topological valley transport at bilayer graphene area partitions. Nature 520, 650–655 (2015).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Shalaev, M. I. et al. Strong topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Lu, J. et al. Valley topological phases in bilayer sonic crystals. Phys. Rev. Lett. 120, 116802 (2018).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Yan, M. et al. On-chip valley topological supplies for elastic wave manipulation. Nat. Mater. 17, 993–998 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Liu, T.-W. & Semperlotti, F. Tunable acoustic valley-Corridor edge states in reconfigurable phononic elastic waveguides. Phys. Rev. Appl. 9, 014001 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Lohse, M. et al. Exploring 4D quantum Corridor physics with a 2D topological cost pump. Nature 553, 55–58 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Grinberg, I. H. et al. Strong temporal pumping in a magneto-mechanical topological insulator. Nat. Commun. 11, 974 (2020).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981).

    Article 

    Google Scholar 

  • 29.

    Chen, C.-W. et al. Mechanical analogue of a Majorana certain state. Adv. Mater. 31, 1904386 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Gao, P. et al. Majorana-like zero modes in Kekulé distorted sonic lattices. Phys. Rev. Lett. 123, 196601 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).

    Article 

    Google Scholar 

  • 32.

    Chaunsali, R. & Theocharis, G. Self-induced topological transition in phononic crystals by nonlinearity administration. Phys. Rev. B 100, 014302 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Lan, Z., You, J. W. & Panoiu, N. C. Nonlinear one-way edge-mode interactions for frequency mixing in topological photonic crystals. Phys. Rev. B 101, 155422 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Noh, J. et al. Braiding photonic topological zero modes. Nat. Phys. 16, 989–993 (2020).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Huber, J. S. et al. Spectral proof of compacting of a weakly damped pushed nanomechanical mode. Phys. Rev. X 10, 021066 (2020).

    CAS 

    Google Scholar 

  • 36.

    Cha, J. & Daraio, C. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies. Nat. Nanotechnol. 13, 1016–1020 (2018).

    CAS 
    Article 

    Google Scholar 

  • Supply

    Leave a Comment