Floating solid-state thin films with dynamic structural colour

  • 1.

    Diao, Y. et al. Answer coating of large-area natural semiconductor skinny movies with aligned single-crystalline domains. Nat. Mater. 12, 665–671 (2013).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings primarily based on sturdy interference results in extremely absorbing media. Nat. Mater. 12, 20–24 (2013).

    CAS 
    Article 

    Google Scholar 

  • three.

    Xi, J.-Q. et al. Optical thin-film supplies with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon. 1, 176–179 (2007).

    CAS 
    Article 

    Google Scholar 

  • four.

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in skinny movies. Nat. Mater. 6, 21–29 (2007).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Inexperienced, M. A. Skinny-film photo voltaic cells: evaluation of supplies, applied sciences and industrial standing. J. Mater. Sci. Mater. Electron. 18, 15–19 (2007).

    Article 

    Google Scholar 

  • 6.

    Zheng, X. et al. Managing grains and interfaces through ligand anchoring permits 22.three%-efficiency inverted perovskite photo voltaic cells. Nat. Vitality 5, 131–140 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Hou, Y. et al. Environment friendly tandem photo voltaic cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    CAS 
    Article 

    Google Scholar 

  • eight.

    Liu, J. et al. Pathways for sensible high-energy long-cycling lithium metallic batteries. Nat. Vitality four, 180–186 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Tan, D. H., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable power storage utilizing all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Brongersma, M. L. Introductory lecture: nanoplasmonics. Faraday Talk about. 178, 9–36 (2015).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical components. Science 345, 298–302 (2014).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Kong, B., Selomulya, C., Zheng, G. & Zhao, D. New faces of porous Prussian blue: interfacial meeting of built-in hetero-structures for sensing purposes. Chem. Soc. Rev. 44, 7997–8018 (2015).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Nogueira, G. M., Banerjee, D., Cohen, R. E. & Rubner, M. F. Spray-layer-by-layer meeting can extra quickly produce optical-quality multistack heterostructures. Langmuir 27, 7860–7867 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Yang, D., Ye, S. & Ge, J. From metastable colloidal crystalline arrays to quick responsive mechanochromic photonic gels: an natural gel for deformation‐primarily based show panels. Adv. Funct. Mater. 24, 3197–3205 (2014).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Kim, J. B. et al. Wrinkles and deep folds as photonic buildings in photovoltaics. Nat. Photon. 6, 327–332 (2012).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Park, W. & Lee, J.-B. Mechanically tunable photonic crystal construction. Appl. Phys. Lett. 85, 4845–4847 (2004).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Snoswell, D. R. et al. Shear ordering in polymer photonic crystals. Phys. Rev. E 81, 020401 (2010).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Tse, W.-Ok. & MacDonald, A. H. Big magneto-optical Kerr impact and common Faraday impact in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    Article 

    Google Scholar 

  • 19.

    Kim, H. et al. Structural color printing utilizing a magnetically tunable and lithographically fixable photonic crystal. Nat. Photon. three, 534–540 (2009).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Yan, C. et al. Stretchable and wearable electrochromic gadgets. ACS Nano eight, 316–322 (2014).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).

    Article 

    Google Scholar 

  • 22.

    Luo, C., Narayanaswamy, A., Chen, G. & Joannopoulos, J. Thermal radiation from photonic crystals: a direct calculation. Phys. Rev. Lett. 93, 213905 (2004).

    Article 

    Google Scholar 

  • 23.

    Ito, M. M. et al. Structural color utilizing organized microfibrillation in glassy polymer movies. Nature 570, 363–367 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Lee, H. S., Shim, T. S., Hwang, H., Yang, S.-M. & Kim, S.-H. Colloidal photonic crystals towards structural color palettes for safety supplies. Chem. Mater. 25, 2684–2690 (2013).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Gupta, T. D. et al. Self-assembly of nanostructured glass metasurfaces through templated fluid instabilities. Nat. Nanotechnol. 14, 320–327 (2019).

    Article 

    Google Scholar 

  • 26.

    Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic color show. Nat. Commun. eight, 14606 (2017).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Huang, M. T. et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun. 10, 5030 (2019).

    Article 

    Google Scholar 

  • 28.

    Ríos, C., Hosseini, P., Taylor, R. A. & Bhaskaran, H. Color depth modulation and determination in phase-change materials nanodisplays. Adv. Mater. 28, 4720–4726 (2016).

    Article 

    Google Scholar 

  • 29.

    Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change movies. Nature 511, 206–211 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Dong, W. et al. Large bandgap part change materials tuned seen photonics. Adv. Funct. Mater. 29, 1806181 (2018).

    Article 

    Google Scholar 

  • 31.

    Zhu, X., Vannahme, C., Højlund-Nielsen, E., Mortensen, N. A. & Kristensen, A. Plasmonic color laser printing. Nat. Nanotechnol. 11, 325–329 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Zhu, X., Yan, W., Levy, U., Mortensen, N. A. & Kristensen, A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. three, e1602487 (2017).

    Article 

    Google Scholar 

  • 33.

    Kim, T.-H. et al. Full-colour quantum dot shows fabricated by switch printing. Nat. Photon. 5, 176–182 (2011).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Kristensen, A. et al. Plasmonic color era. Nat. Rev. Mater. 2, 16088 (2017).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip pure meeting of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Zhou, Y. et al. Skinny-film Sb2Sethree photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photon. 9, 409–415 (2015).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Oh, Y. et al. Plasmonic periodic nanodot arrays through laser interference lithography for natural photovoltaic cells with >10% effectivity. ACS Nano 10, 10143–10151 (2016).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Jolly Bose, R. et al. Impact of silver incorporation in part formation and band hole tuning of tungsten oxide skinny movies. J. Appl. Phys. 112, 114311 (2012).

    Article 

    Google Scholar 

  • 39.

    Mathew, M. et al. Anomalous conduct of silver doped indium sulfide skinny movies. J. Appl. Phys. 100, 033504 (2006).

    Article 

    Google Scholar 

  • 40.

    Yamashita, T. & Hayes, P. Evaluation of XPS spectra of Fe2+ and Fethree+ ions in oxide supplies. Appl. Surf. Sci. 254, 2441–2449 (2008).

    CAS 
    Article 

    Google Scholar 

  • Supply

    Leave a Comment