Nanoplastics are neither microplastics nor engineered nanoparticles

  • 1.

    Eriksen, M. Plastic air pollution on the planet’s oceans: greater than 5 trillion plastic items weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Geyer, R., Jambeck, J. R. & Regulation, Ok. L. Manufacturing, use, and destiny of all plastics ever made. Sci. Adv. three, e1700782 (2017).

    Article 
    CAS 

    Google Scholar 

  • three.

    Jambeck, J. R. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    CAS 
    Article 

    Google Scholar 

  • four.

    Sebille, Evan A worldwide stock of small floating plastic particles. Env. Res Lett. 10, 124006 (2015).

    Article 

    Google Scholar 

  • 5.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the present understanding to determine the data gaps and future analysis priorities. Sci. Whole Environ. 586, 127–141 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ekvall, M. T. Nanoplastics shaped through the mechanical breakdown of daily-use polystyrene merchandise. Nanoscale Adv. 1, 1055–1061 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Hernandez, L. M. et al. Plastic teabags launch billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    CAS 
    Article 

    Google Scholar 

  • Eight.

    Lambert, S. & Wagner, M. Formation of microscopic particles through the degradation of various polymers. Chemosphere 161, 510–517 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Dawson, A. L. Turning microplastics into nanoplastics by digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Nguyen, B. et al. Separation and evaluation of microplastics and nanoplastics in advanced environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Ter Halle, A. et al. Nanoplastic within the North Atlantic subtropical gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. & Tufenkji, N. Aggregation and deposition of engineered nanomaterials in aquatic environments: function of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549 (2010).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Chen, Z., Westerhoff, P. & Herckes, P. Quantification of C60 fullerene concentrations in water. Env. Toxicol. Chem. 27, 1852–1859 (2008).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Benn, T. M. & Westerhoff, P. Nanoparticle silver launched into water from commercially out there sock materials. Env. Sci. Technol. 42, 4133–4139 (2008).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Wang, Y., Westerhoff, P. & Hristovski, Ok. D. Destiny and organic results of silver, titanium dioxide, and C60 (fullerene) nanomaterials throughout simulated wastewater therapy processes. J. Hazard. Mater. 201–202, 16–22 (2012).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Gangadoo, S. et al. Nano-plastics and their analytical characterisation and destiny within the marine setting: from supply to sea. Sci. Whole Environ. 732, 138792 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Gigault, J. et al. Present opinion: what’s a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Rist, S. & Hartmann, N. B. in Freshwater Microplastics: Rising Environmental Contaminants? (eds Wagner, M. & Lambert, S.) 25–49 (Springer, 2018).

  • 19.

    Hartmann, N. B. et al. Are we talking the identical language? Suggestions for a definition and categorization framework for plastic particles. Environ. Sci. Technol. 53, 1039–1047 (2019).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Auffan, M. et al. In direction of a definition of inorganic nanoparticles from an environmental, well being and security perspective. Nat. Nanotechnol. four, 634–641 (2009).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Isaacson, C. W., Kleber, M. & Discipline, J. A. Quantitative evaluation of fullerene nanomaterials in environmental methods: a crucial evaluation. Environ. Sci. Technol. 43, 6463–6474 (2009).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Plastics: The Details 2019 (PlasticsEurope, 2019); https://www.plasticseurope.org/en/sources/publications/1804-plastics-facts-2019

  • 23.

    Resnik, D. B. How ought to engineered nanomaterials be regulated for public and environmental well being? AMA J. Ethics 21, 363–369 (2019).

    Article 

    Google Scholar 

  • 24.

    Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. Ok. Characterization strategies for nanoparticles: comparability and complementarity upon finding out nanoparticle properties. Nanoscale 10, 12871–12934 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Sander, M., Kohler, H.-P. E. & McNeill, Ok. Assessing the environmental transformation of nanoplastic by 13C-labelled polymers. Nat. Nanotechnol. 14, 301–303 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Rochman, C. M. et al. Rethinking microplastics as a various contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Liu, P. et al. Impact of weathering on environmental habits of microplastics: properties, sorption and potential dangers. Chemosphere 242, 125193 (2020).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Holmes, L. A., Turner, A. & Thompson, R. C. Interactions between hint metals and plastic manufacturing pellets underneath estuarine circumstances. Mar. Chem. 167, 25–32 (2014).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Balakrishnan, G., Déniel, M., Nicolai, T., Chassenieux, C. & Lagarde, F. In direction of extra lifelike reference microplastics and nanoplastics: preparation of polyethylene micro/nanoparticles with a biosurfactant. Environ. Sci. Nano 6, 315–324 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Pessoni, L. et al. Cleaning soap- and metal-free polystyrene latex particles as a nanoplastic mannequin. Environ. Sci. Nano 6, 2253–2258 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to analyze destiny and behavior in advanced environmental methods. Nat. Nanotechnol. 14, 362–368 (2019).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Wagner, S. & Reemtsma, T. Issues we all know and don’t find out about nanoplastic within the setting. Nat. Nanotechnol. 14, 300–301 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Koelmans, A. A. Proxies for nanoplastic. Nat. Nanotechnol. 14, 307–308 (2019).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Azimi, P., Zhao, D., Pouzet, C., Crain, N. E. & Stephens, B. Emissions of ultrafine particles and risky natural compounds from commercially out there desktop three-dimensional printers with a number of filaments. Environ. Sci. Technol. 50, 1260–1268 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life within the “plastisphere”: microbial communities on plastic marine particles. Environ. Sci. Technol. 47, 7137–7146 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Muncke, J. Publicity to endocrine disrupting compounds by way of the meals chain: is packaging a related supply? Sci. Whole Environ. 407, 4549–4559 (2009).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Zimmermann, L., Dierkes, G., Ternes, T. A., Völker, C. & Wagner, M. Benchmarking the in vitro toxicity and chemical composition of plastic shopper merchandise. Environ. Sci. Technol. 53, 11467–11477 (2019).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Hirai, H. et al. Natural micropollutants in marine plastics particles from the open ocean and distant and concrete seashores. Mar. Pollut. Bull. 62, 1683–1692 (2011).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Crank J. The Arithmetic of Diffusion (Elsevier, 1975).

  • 42.

    Mercea, P. V. et al. Modelling migration of gear from polymers into ingesting water. Half 1 – diffusion coefficient estimations. Polym. Take a look at. 65, 176–188 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally lifelike concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Karlsson, H. L., Gustafsson, J., Cronholm, P. & Möller, L. Measurement-dependent toxicity of metallic oxide particles–a comparability between nano- and micrometer measurement. Toxicol. Lett. 188, 112–118 (2009).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Ruenraroengsak, P. Respiratory epithelial cytotoxicity and membrane injury (holes) brought on by amine-modified nanoparticles. Nanotoxicology 6, 94–108 (2012).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated mobile response is size-dependent. Nat. Nanotechnol. three, 145–150 (2008).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Zhao, J. & Stenzel, M. H. Entry of nanoparticles into cells: the significance of nanoparticle properties. Polym. Chem. 9, 259–272 (2018).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Johnston, C. J. et al. Pulmonary results induced by ultrafine PTFE particles. Toxicol. Appl. Pharmacol. 168, 208–215 (2000).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Schwab, F. Obstacles, pathways and processes for uptake, translocation and accumulation of nanomaterials in vegetation–crucial evaluation. Nanotoxicology 10, 257–278 (2016).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Rist, S., Baun, A. & Hartmann, N. B. Ingestion of micro- and nanoplastics in Daphnia magna – quantification of physique burdens and evaluation of feeding charges and replica. Environ. Pollut. 228, 398–407 (2017).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Miao, L. et al. Acute results of nanoplastics and microplastics on periphytic biofilms relying on particle measurement, focus and floor modification. Environ. Pollut. 255, 113300 (2019).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Astefanei, A. et al. Characterization of aggregates of floor modified fullerenes by asymmetrical circulate field-flow fractionation with multi-angle gentle scattering detection. J. Chromatogr. A 1408, 197–206 (2015).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Bolea, E., Jiménez-Lamana, J., Laborda, F. & Castillo, J. R. Measurement characterization and quantification of silver nanoparticles by uneven circulate field-flow fractionation coupled with inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 401, 2723–2732 (2011).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Kammer, F., von der, Legros, S., Hofmann, T., Larsen, E. H. & Loeschner, Ok. Separation and characterization of nanoparticles in advanced meals and environmental samples by field-flow fractionation. Developments Anal. Chem. 30, 425–436 (2011).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Baalousha, M., Stolpe, B. & Lead, J. R. Move field-flow fractionation for the evaluation and characterization of pure colloids and manufactured nanoparticles in environmental methods: a crucial evaluation. J. Chromatogr. A 1218, 4078–4103 (2011).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Gigault, J., El Hadri, H., Reynaud, S., Deniau, E. & Grassl, B. Asymmetrical circulate discipline circulate fractionation strategies to characterize submicron particles: software to carbon-based aggregates and nanoplastics. Anal. Bioanal. Chem. 409, 6761–6769 (2017).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Correia, M. & Loeschner, Ok. Detection of nanoplastics in meals by uneven circulate field-flow fractionation coupled to multi-angle gentle scattering: prospects, challenges and analytical limitations. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-Zero18-0919-Eight (2018).

  • 58.

    Dazzi, A. & Prater, C. B. AFM-IR: know-how and functions in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Domingos, R. F. et al. Characterizing manufactured nanoparticles within the setting: multimethod dedication of particle sizes. Environ. Sci. Technol. 43, 7277–7284 (2009).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Stone, V. et al. Nanomaterials for environmental research: classification, reference materials points, and techniques for physico-chemical characterisation. Sci. Whole Environ. 408, 1745–1754 (2010).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Mintenig, S. M., Bäuerlein, P. S., Koelmans, A. A., Dekker, S. C. & Van Wezel, A. P. Closing the hole between small and smaller: in the direction of a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Davranche, M. et al. Are nanoplastics capable of bind important quantity of metals? The lead instance. Environ. Pollut. 249, 940–948 (2019).

    CAS 
    Article 

    Google Scholar 

  • Supply

    Leave a Comment