Placing nanoplastics in the context of global plastic pollution

  • 1.

    Boucher, J. & Friot, D. Main Microplastics within the Oceans: A World Analysis of Sources (IUCN, 2017).

  • 2.

    Lambert, S. & Wagner, M. Characterisation of nanoplastics in the course of the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    CAS 
    Article 

    Google Scholar 

  • three.

    El Hadri, H., Gigault, J., Maxit, B., Grassl, B. & Reynaud, S. Nanoplastic from mechanically degraded main and secondary microplastics for environmental assessments. NanoImpact 17, 100206 (2020).

    Article 

    Google Scholar 

  • four.

    Sauvé, S. & Desrosiers, M. A overview of what’s an rising contaminant. Chem. Cent. J. eight, 15 (2014).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Haward, M. Plastic air pollution of the world’s seas and oceans as a up to date problem in ocean governance. Nat. Commun. 9, 667 (2018).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Landon-Lane, M. Company social accountability in marine plastic particles governance. Mar. Pollut. Bull. 127, 310–319 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Loges, B. & Jakobi, A. P. No more than the sum of its elements: de-centered norm dynamics and the governance of plastics. Environ. Polit. 29, 1004–1023 (2019).

    Article 

    Google Scholar 

  • eight.

    Lau, W. W. et al. Evaluating eventualities towards zero plastic air pollution. Science 369, 1455–1461 (2020).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Geyer, R., Jambeck, J. R. & Legislation, Okay. L. Manufacturing, use, and destiny of all plastics ever made. Sci. Adv. three, e1700782 (2017).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Ryberg, M. W., Hauschild, M. Z., Wang, F., Averous-Monnery, S. & Laurent, A. World environmental losses of plastics throughout their worth chains. Resour. Conserv. Recycl. 151, 104459 (2019).

    Article 

    Google Scholar 

  • 11.

    Boucher, J., Dubois, C., Kounina, A. & Puydarrieux, P. Assessment of Plastic Footprint Methodologies (IUCN, 2019).

  • 12.

    Lambert, S. & Wagner, M. in Freshwater Microplastics (eds Wagner, M. & Lambert, S.) 1–23 (Springer, 2018).

  • 13.

    Lambert, S. & Wagner, M. Environmental efficiency of bio-based and biodegradable plastics: the highway forward. Chem. Soc. Rev. 46, 6855–6871 (2017).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Horn, O., Nalli, S., Cooper, D. & Nicell, J. Plasticizer metabolites within the surroundings. Water Res. 38, 3693–3698 (2004).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Erler, C. & Novak, J. Bisphenol a publicity: human danger and well being coverage. J. Pediatr. Nurs. 25, 400–407 (2010).

    Article 

    Google Scholar 

  • 17.

    Wazir, U., Mokbel, Okay., Bisphenol, A. & Concise, A. Assessment of literature and a dialogue of well being and regulatory implications. In vivo 33, 1421–1423 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Dauvergne, P. The facility of environmental norms: marine plastic air pollution and the politics of microbeads. Environ. Polit. 27, 579–597 (2018).

    Article 

    Google Scholar 

  • 19.

    Mitrano, D. M. & Wohlleben, W. Microplastic regulation must be extra exact to incentivize each innovation and environmental security. Nat. Commun. 11, 5324 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Eriksen, M. et al. Plastic air pollution on the planet’s oceans: greater than 5 trillion plastic items weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Simon, B. What are essentially the most vital facets of supporting the round economic system within the plastic trade? Resour. Conserv. Recycl. 141, 299–300 (2019).

    Article 

    Google Scholar 

  • 22.

    Sources, Destiny and Results of Microplastics within the Marine Setting: A World Evaluation (GESAMP Joint Group of Specialists on the Scientific Points of Marine Environmental Safety, 2015).

  • 23.

    Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: the primary reported values of particles in floor and sub-surface samples. Sci. Rep. 5, 14947 (2015).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Bergmann, M. et al. White and fantastic? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Bergmann, M. et al. Excessive portions of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Vianello, A., Jensen, R. L., Liu, L. & Vollertsen, J. Simulating human publicity to indoor airborne microplastics utilizing a respiration thermal manikin. Sci. Rep. 9, 8670 (2019).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Zhang, Q. et al. Microplastic fallout in several indoor environments. Environ. Sci. Technol. 54, 6530–6539 (2020).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Shruti, V., Peréz-Guevara, F., Elizalde-Martínez, I. & Kutralam-Muniasamy, G. First examine of its variety on the microplastic contamination of soppy drinks, chilly tea and vitality drinks—future analysis and environmental issues. Sci. Whole Environ. 726, 138580 (2020).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Hernandez, L. M. et al. Plastic teabags launch billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Cox, Okay. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Provencher, J. F. et al. Proceed with warning: the necessity to elevate the publication bar for microplastics analysis. Sci. Whole Environ. 748, 141426 (2020).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Mintenig, S. M., Bauerlein, P., Koelmans, A. A., Dekker, S. C. & van Wezel, A. Closing the hole between small and smaller: in direction of a framework to analyse nano-and microplastics in aqueous environmental samples. Environ. Sci. Nano 5, 1640–1649 (2018).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Gigault, J., Pedrono, B., Maxit, B. & Ter Halle, A. Marine plastic litter: the unanalyzed nano-fraction. Environ. Sci. Nano three, 346–350 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    González-Pleiter, M. et al. Secondary nanoplastics launched from a biodegradable microplastic severely influence freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).

    Article 

    Google Scholar 

  • 35.

    Koelmans, A. A. Besseling, E. & Shim, W. J. in Marine Anthropogenic Litter (eds Bergmann, M. et al.) 325–340 (Springer, 2015).

  • 36.

    Wright, S. L., Thompson, R. C. & Galloway, T. S. The bodily impacts of microplastics on marine organisms: a overview. Environ. Pollut. 178, 483–492 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Alexy, P. et al. Managing the analytical challenges associated to micro-and nanoplastics within the surroundings and meals: filling the information gaps. Meals Addit. Contam. Half A 37, 1–10 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Sendra, M., Sparaventi, E., Novoa, B. & Figueras, A. An outline of the internalization and results of microplastics and nanoplastics as pollution of rising concern in bivalves. Sci. Whole Environ. 753, 142024 (2020).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally reasonable concentrations. Envion. Sci. Technol. 52, 14480–14486 (2018).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Li, Z., Feng, C., Wu, Y. & Guo, X. Impacts of nanoplastics on bivalve: fluorescence tracing of organ accumulation, oxidative stress and harm. J. Hazard. Mater. 392, 122418 (2020).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Bouwmeester, H., Hollman, P. C. & Peters, R. J. Potential well being influence of environmentally launched micro-and nanoplastics within the human meals manufacturing chain: experiences from nanotoxicology. Environ. Sci. Technol. 49, 8932–8947 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Wright, S. L. & Kelly, F. J. Plastic and human well being: a micro difficulty? Environ. Sci. Technol. 51, 6634–6647 (2017).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Hartmann, N. B. et al. Are we talking the identical language? Suggestions for a definition and categorization framework for plastic particles. Environ. Sci. Technol. 53, 1039–1047 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Gigault, J. et al. Present opinion: what’s a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Maynard, A. D. Don’t outline nanomaterials. Nature 475, 31 (2011).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Stamm, H. Nanomaterials must be outlined. Nature 476, 399 (2011).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Authorized and sensible challenges in classifying nanomaterials in line with regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Toumey, C. The thinker and the engineer. Nat. Nanotechnol. 11, 306–307 (2016).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Auffan, M. et al. In direction of a definition of inorganic nanoparticles from an environmental, well being and security perspective. Nat. Nanotechnol. four, 634–641 (2009).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Zhang, H. et al. Use of steel oxide nanoparticle band hole to develop a predictive paradigm for oxidative stress and acute pulmonary irritation. ACS Nano 6, 4349–4368 (2012).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Burello, E. & Price, A. P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5, 228–235 (2011).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Koelmans, A. A., Bakir, A., Burton, G. A. & Janssen, C. R. Microplastic as a vector for chemical compounds within the aquatic surroundings: vital overview and model-supported reinterpretation of empirical research. Environ. Sci. Technol. 50, 3315–3326 (2016).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Lohmann, R. Microplastics should not vital for the biking and bioaccumulation of natural pollution within the oceans—however ought to microplastics be thought of POPs themselves? Integr. Environ. Assess. Manag. 13, 460–465 (2017).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Cedervall, T. et al. Understanding the nanoparticle–protein corona utilizing strategies to quantify trade charges and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Docter, D. et al. The nanoparticle biomolecule corona: classes realized–problem accepted? Chem. Soc. Rev. 44, 6094–6121 (2015).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Freland, S., Kaegi, R., Hufenus, R. & Mitrano, D. M. Lengthy-term evaluation of nanoplastic particle and microplastic fiber flux by means of a pilot wastewater therapy plant utilizing metal-doped plastics. Water Res 182, 115860 (2020).

    Article 
    CAS 

    Google Scholar 

  • 57.

    Keller, A. S., Jimenez-Martinez, J. & Mitrano, D. M. Transport of nano-and microplastic by means of unsaturated porous media from sewage sludge utility. Environ. Sci. Technol. 54, 911–920 (2019).

    Article 
    CAS 

    Google Scholar 

  • 58.

    Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. eight, 603–612 (2007).

    CAS 
    Article 

    Google Scholar 

  • 59.

    McNeil, S. E. Nanoparticle therapeutics: a private perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 264–271 (2009).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Wang, F. et al. Time resolved examine of cell loss of life mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5, 10868–10876 (2013).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Half. Fibre Toxicol. 7, 2 (2010).

    Article 
    CAS 

    Google Scholar 

  • 62.

    Donaldson, Okay., Murphy, F. A., Duffin, R. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium: a overview of the speculation relating to the function of lengthy fibre retention within the parietal pleura, irritation and mesothelioma. Half. Fibre Toxicol. 7, 5 (2010).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Geiser, M. et al. Ultrafine particles cross mobile membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Well being Perspect. 113, 1555–1560 (2005).

    Article 

    Google Scholar 

  • 64.

    Wick, P. et al. Barrier capability of human placenta for nanosized supplies. Environ. Well being Perspect. 118, 432–436 (2010).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Mastrangelo, G. et al. Lung most cancers danger in employees uncovered to poly (vinyl chloride) mud: a nested case-referent examine. Occup. Environ. Med. 60, 423–428 (2003).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Rothen-Rutishauser, B., Clean, F., Mühlfeld, C. & Gehr, P. In vitro fashions of the human epithelial airway barrier to check the poisonous potential of particulate matter. Professional Opin. Drug Metab. Toxicol. four, 1075–1089 (2008).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Borm, P. J. & Kreyling, W. Toxicological hazards of inhaled nanoparticles—potential implications for drug supply. J. Nanosci. Nanotechnol. four, 521–531 (2004).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Hesler, M. et al. Multi-endpoint toxicological evaluation of polystyrene nano- and microparticles in several organic fashions in vitro. Toxicol. In Vitro 61, 104610 (2019).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Donaldson, Okay., Stone, V., Tran, C., Kreyling, W. & Borm, P. J. Nanotoxicology 61, 727–728 (2004).

    CAS 

    Google Scholar 

  • 70.

    Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic within the surroundings and potential influence on human well being. Environ. Sci. Technol. 53, 1748–1765 (2019).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Nguyen, B. et al. Separation and evaluation of microplastics and nanoplastics in advanced environmental samples. Acc. Chem. Res. 52, 858–866 (2019).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Hüffer, T., Praetorius, A., Wagner, S., von der Kammer, F. & Hofmann, T. Microplastic publicity evaluation in aquatic environments: studying from similarities and variations to engineered nanoparticles. Environ. Sci. Technol. 51, 2499–2507 (2017).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Zhang, M. et al. Detection of engineered nanoparticles in aquatic environments: present standing and challenges in enrichment, separation, and evaluation. Environ. Sci. Nano 6, 709–735 (2019).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Hildebrandt, L., Mitrano, D. M., Zimmermann, T. & Pröfrock, D. A nanoplastic sampling and enrichment method by steady stream centrifugation. Entrance. Environ. Sci. eight, 89 (2020).

    Google Scholar 

  • 75.

    Hochella, M. F. et al. Pure, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).

    Article 

    Google Scholar 

  • 76.

    Hochell, M. F., Aruguete, D. M., Kim, B. & Madden, A. S. in Nature’s Nanostructures 1–42 (Pan Stanford, 2012).

  • 77.

    Nanotechnologies—Terminology, I., Definitions for Nano-objects—Nanoparticle, Nanofibre and Nanoplate (Worldwide Group for Standardization, 2008).

  • 78.

    Buffle, J. The important thing function of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. three, 155–158 (2006).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Yang, Y. et al. Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ. Sci. Technol. 48, 6391–6400 (2014).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Stark, W. J., Stoessel, P. R., Wohlleben, W. & Hafner, A. Industrial functions of nanoparticles. Chem. Soc. Rev. 44, 5793–5805 (2015).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Mitrano, D. M., Motellier, S., Clavaguera, S. & Nowack, B. Assessment of nanomaterial getting old and transformations by means of the life cycle of nano-enhanced merchandise. Environ. Int. 77, 132–147 (2015).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the distinction: engineered and pure nanoparticles within the surroundings—launch, conduct, and destiny. Angew. Chem. Int. Ed. 53, 12398–12419 (2014).

    CAS 

    Google Scholar 

  • 83.

    Zhang, Y. et al. Atmospheric microplastics: a overview on present standing and views. Earth Sci. Rev. 203, 103118 (2020).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants within the marine surroundings: a overview. Mar. Pollut. Bull. 62, 2588–2597 (2011).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Pico, Y., Alfarhan, A. & Barcelo, D. Nano-and microplastic evaluation: concentrate on their incidence in freshwater ecosystems and remediation applied sciences. Tendencies Anal. Chem. 113, 409–425 (2019).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Oberdörster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress within the mind of juvenile largemouth bass. Environ. Well being Perspect. 112, 1058–1062 (2004).

    Article 
    CAS 

    Google Scholar 

  • 87.

    Yazdi, A. S. et al. Nanoparticles activate the NLR pyrin area containing three (Nlrp3) inflammasome and trigger pulmonary irritation by means of launch of IL-1α and IL-1β. Proc. Natl Acad. Sci. USA 107, 19449–19454 (2010).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Horngren, T. & Kolodziejczyk, B. Microplastic and nanoplastic air pollution threatens our surroundings. How ought to we reply? World Financial Discussion board https://www.weforum.org/agenda/2018/10/micro-and-nano-plastics-the-next-global-epidemics/ (2018).

  • 89.

    Backhaus, T. & Wagner, M. Microplastics within the surroundings: A lot ado about nothing? A debate. World Chall. four, 1900022 (2018).

    Article 

    Google Scholar 

  • 90.

    Wigger, H., Kägi, R., Wiesner, M. & Nowack, B. Publicity and potential dangers of engineered nanomaterials within the surroundings—present information and instructions for the longer term. Rev. Geophys. 58, e2020RG000710 (2020).

    Article 

    Google Scholar 

  • 91.

    Jesus, S. et al. Hazard evaluation of polymeric nanobiomaterials for drug supply: what can we study from literature thus far. Entrance. Bioeng. Biotechnol. 7, 261 (2019).

    Article 

    Google Scholar 

  • 92.

    Hauser, M., Li, G. & Nowack, B. Environmental hazard evaluation for polymeric and inorganic nanobiomaterials utilized in drug supply. J. Nanobiotechnol. 17, 56 (2019).

    Article 

    Google Scholar 

  • 93.

    Reidy, B., Haase, A., Luch, A., Dawson, Okay. A. & Lynch, I. Mechanisms of silver nanoparticle launch, transformation and toxicity: a vital overview of present information and proposals for future research and functions. Supplies 6, 2295–2350 (2013).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Maynard, A. D. & Aitken, R. J. ‘Secure dealing with of nanotechnology’ ten years on. Nat. Nanotechnol. 11, 998–1000 (2016).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Valsami-Jones, E. & Lynch, I. How protected are nanomaterials? Science 350, 388–389 (2015).

    CAS 
    Article 

    Google Scholar 

  • 96.

    Milosevic, A., Romeo, D. & Wick, P. Understanding nanomaterial biotransformation: an unmet problem to reaching predictive nanotoxicology. Small 16, 1907650 (2020).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Stone, V. et al. ITS-NANO—prioritising nanosafety analysis to develop a stakeholder pushed clever testing technique. Half. Fibre Toxicol. 11, 9 (2014).

    Article 
    CAS 

    Google Scholar 

  • 98.

    Grieger, Okay. et al. Greatest practices from nano-risk evaluation related for different rising applied sciences. Nat. Nanotechnol. 14, 998–1001 (2019).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Hüffer, T., Praetorius, A., Wagner, S., von der Kammer, F. & Hofmann, T. Microplastic publicity evaluation in aquatic environments: studying from similarities and variations to engineered nanoparticles. Environ. Sci. Technol. 51, 2499–2507 (2017).

    Article 
    CAS 

    Google Scholar 

  • 100.

    Hristozov, D. et al. Frameworks and instruments for danger evaluation of manufactured nanomaterials. Environ. Int. 95, 36–53 (2016).

    CAS 
    Article 

    Google Scholar 

  • 101.

    Romeo, D., Salieri, B., Hischier, R., Nowack, B. & Wick, P. An built-in pathway primarily based on in vitro information for the human hazard evaluation of nanomaterials. Environ. Int. 137, 105505 (2020).

    CAS 
    Article 

    Google Scholar 

  • 102.

    Salieri, B. et al. Relative efficiency issue method allows using in vitro info for estimation of human impact elements for nanoparticle toxicity in life-cycle influence evaluation. Nanotoxicology 14, 275–286 (2020).

    CAS 
    Article 

    Google Scholar 

  • 103.

    Faria, M. et al. Minimal info reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    CAS 
    Article 

    Google Scholar 

  • 104.

    Fox-Glassman, Okay. T. & Weber, E. U. What makes danger acceptable? Revisiting the 1978 psychological dimensions of perceptions of technological dangers. J. Math. Psychol. 75, 157–169 (2016).

    Article 

    Google Scholar 

  • 105.

    Leslie, H. & Depledge, M. The place is the proof that human publicity to microplastics is protected? Environ. Int. 142, 105807 (2020).

    CAS 
    Article 

    Google Scholar 

  • 106.

    Wardman, T., Koelmans, A. A., Whyte, J. & Pahl, S. Speaking the absence of proof for microplastics danger: balancing sensation and reflection. Environ. Int. 150, 106116 (2020).

    Article 

    Google Scholar 

  • 107.

    Gouin, T. et al. Clarifying the absence of proof relating to human well being dangers to microplastic particles in drinking-water: top quality sturdy information wished. Environ. Int. 150, 106141 (2020).

    Article 

    Google Scholar 

  • Supply

    Leave a Comment