Designing cryo-enzymatic reactions in subzero liquid water by lipidic mesophase nanoconfinement

  • 1.

    Rothschild, L. J. & Mancinelli, R. L. Life in excessive environments. Nature 409, 1092–1101 (2001).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Clarke, A. The thermal limits to life on Earth. Int. J. Astrobiol. 13, 141–154 (2014).

    CAS 
    Article 

    Google Scholar 

  • three.

    Gallat, F. X. et al. A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and exercise. J. Am. Chem. Soc. 134, 13168–13171 (2012).

    CAS 
    Article 

    Google Scholar 

  • four.

    Franks, F. Biophysics and Biochemistry at Low Temperatures (Cambridge Univ. Press, 1985).

  • 5.

    Lazaridis, T. & Karplus, M. Efficient power operate for proteins in answer. Proteins 35, 133–152 (1999).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Laage, D., Elsaesser, T. & Hynes, J. T. Water dynamics within the hydration shells of biomolecules. Chem. Rev. 117, 10694–10725 (2017).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Bellissent-Funel, M.-C. et al. Water determines the construction and dynamics of proteins. Chem. Rev. 116, 7673–7697 (2016).

    CAS 
    Article 

    Google Scholar 

  • eight.

    Douzou, P., Sireix, R. & Travers, F. Temporal decision of particular person steps in an enzymic response at low temperature. Proc. Natl Acad. Sci. USA 66, 787–792 (1970).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Terefe, N. S., Van Loey, A. & Hendrickx, M. Modelling the kinetics of enzyme-catalysed reactions in frozen programs: the alkaline phosphatase catalysed hydrolysis of di-sodium-p-nitrophenyl phosphate. Meals Sci. Technol. Int 5, 335–344 (2004).

    Google Scholar 

  • 10.

    Johal, A. R. et al. Sequence-dependent results of cryoprotectants on the lively websites of the human ABO (H) blood group A and B glycosyltransferases. Acta Crystallogr. D 68, 268–276 (2012).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Dai, F., Huang, Y., Zhou, M. & Zhang, G. The affect of chilly acclimation on antioxidative enzymes and antioxidants in delicate and tolerant barley cultivars. Biol. Plant. 53, 257–262 (2009).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Jönsson, Å., Adlercreutz, P. & Mattiasson, B. Results of subzero temperatures on the kinetics of protease catalyzed dipeptide synthesis in natural media. Biotechnol. Bioeng. 46, 429–436 (1995).

    Article 

    Google Scholar 

  • 13.

    Douzou, P., Keh, E. & Balny, C. Cryoenzymology in aqueous media: micellar solubilized water clusters. Proc. Natl Acad. Sci. USA 76, 681–684 (1979).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Mishima, O. & Stanley, H. E. The connection between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Angell, C. Supercooled water. Annu Rev. Phys. Chem. 34, 593–630 (1983).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Levinger, N. E. Water in confinement. Science 298, 1722–1723 (2002).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Yao, Y. et al. Homogeneous nucleation of ice confined in hole silica spheres. J. Phys. Chem. B 121, 306–313 (2017).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Gallo, P., Rovere, M. & Spohr, E. Supercooled confined water and the mode coupling crossover temperature. Phys. Rev. Lett. 85, 4317–4320 (2000).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Suzuki, Y. et al. Homogeneous nucleation of predominantly cubic ice confined in nanoporous alumina. Nano Lett. 15, 1987–1992 (2015).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Schreiber, A., Ketelsen, I. & Findenegg, G. H. Melting and freezing of water in ordered mesoporous silica supplies. Phys. Chem. Chem. Phys. three, 1185–1195 (2001).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Findenegg, G. H., Jähnert, S., Akcakayiran, D. & Schreiber, A. Freezing and melting of water confined in silica nanopores. Chemphyschem 9, 2651–2659 (2008).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Yao, Y. et al. Crystallization and dynamics of water confined in mannequin mesoporous silica particles: two ice nuclei and two fractions of water. Langmuir 35, 5890–5901 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Erickson, H. P. Measurement and form of protein molecules on the nanometer stage decided by sedimentation, gel filtration, and electron microscopy. Biol. Proced. On-line 11, 32–51 (2009).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Hande, V. R. & Chakrabarty, S. Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the function of charged interfaces, confinement dimension and properties of water. Phys. Chem. Chem. Phys. 18, 21767–21779 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Venables, D. S., Huang, Okay. & Schmuttenmaer, C. A. Impact of reverse micelle dimension on the librational band of confined water and methanol. J. Phys. Chem. B 105, 9132–9138 (2001).

    CAS 
    Article 

    Google Scholar 

  • 26.

    De, T. Okay. & Maitra, A. Resolution behaviour of Aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59, 95–193 (1995).

    CAS 
    Article 

    Google Scholar 

  • 27.

    van’t Hag, L., Gras, S. L., Conn, C. E. & Drummond, C. J. Lyotropic liquid crystal engineering transferring past binary compositional —ordered nanostructured amphiphile self-assembly supplies by design. Chem. Soc. Rev. 46, 2705–2731 (2017).

    Article 

    Google Scholar 

  • 28.

    Mezzenga, R. in Self-Assembled Supramolecular Architectures: Lyotropic Liquid Crystals (eds Garti, N., Somasundaran, P & Mezzenga, R.) 1–20 (Wiley, 2012).

  • 29.

    Vallooran, J. J. et al. Lipidic cubic phases as a flexible platform for the fast detection of biomarkers, viruses, micro organism, and parasites. Adv. Funct. Mater. 26, 181–190 (2016).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Zhou, T. et al. Environment friendly uneven synthesis of carbohydrates by aldolase nano-confined in lipidic cubic mesophases. ACS Catal. eight, 5810–5815 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Zhou, T., Vallooran, J. J. & Mezzenga, R. Supramolecular chirality and crystallization from biocatalytic self-assembly in lipidic cubic mesophases. Nanoscale 11, 5891–5895 (2019).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Solar, W., Vallooran, J. J., Zabara, A. & Mezzenga, R. Controlling enzymatic exercise and kinetics in swollen mesophases by bodily nano-confinement. Nanoscale 6, 6853–6859 (2014).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Solar, W., Vallooran, J. J. & Mezzenga, R. Enzyme kinetics in liquid crystalline mesophases: dimension issues, but additionally topology. Langmuir 31, 4558–4565 (2015).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Manni, L. S. et al. Smooth biomimetic nanoconfinement promotes amorphous water over ice. Nat. Nanotechnol. 14, 609–615 (2019).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Lane, L. B. Freezing factors of glycerol and its aqueous options. Ind. Eng. Chem. Res. 17, 924–924 (1925).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Murata, Okay. & Tanaka, H. Liquid–liquid transition with out macroscopic section separation in a water–glycerol combination. Nat. Mater. 11, 436–443 (2012).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Popov, I., Greenbaum, A., Sokolov, A. P. & Feldman, Y. The puzzling first-order section transition in water–glycerol mixtures. Phys. Chem. Chem. Phys. 17, 18063–18071 (2015).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Gainaru, C. et al. Nuclear-magnetic-resonance measurements reveal the origin of the Debye course of in monohydroxy alcohols. Phys. Rev. Lett. 105, 258303 (2010).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Vallooran, J. J., Assenza, S. & Mezzenga, R. Spatiotemporal management of enzyme‐induced crystallization below lyotropic liquid crystal nanoconfinement. Angew. Chem. Int. Ed. 58, 7289–7293 (2019).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Sauer, D. et al. Dynamics of water–alcohol mixtures: insights from nuclear magnetic resonance, broadband dielectric spectroscopy, and triplet solvation dynamics. J. Chem. Phys. 140, 114503 (2014).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Cerveny, S., Mallamace, F., Swenson, J., Vogel, M. & Xu, L. Confined water as mannequin of supercooled water. Chem. Rev. 116, 7608–7625 (2016).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Johari, G. & Whalley, E. The dielectric properties of ice Ih within the vary 272–133 Okay. J. Chem. Phys. 75, 1333–1340 (1981).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Popov, I., Puzenko, A., Khamzin, A. & Feldman, Y. The dynamic crossover in dielectric rest conduct of ice Ih. Phys. Chem. Chem. Phys. 17, 1489–1497 (2015).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Shinyashiki, N. et al. Glass transitions in aqueous options of protein (bovine serum albumin). J. Phys. Chem. B 113, 14448–14456 (2009).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Moore, E. B., De La Llave, E., Welke, Okay., Scherlis, D. A. & Molinero, V. Freezing, melting and construction of ice in a hydrophilic nanopore. Phys. Chem. Chem. Phys. 12, 4124–4134 (2010).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Helfrich, W. Elastic properties of lipid bilayers: principle and attainable experiments. Z. Naturforsch. C 28, 693–703 (1973).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Josephy, P. D., Eling, T. & Mason, R. P. The horseradish peroxidase-catalyzed oxidation of three,5,three′,5′-tetramethylbenzidine. Free radical and charge-transfer advanced intermediates. J. Biol. Chem. 257, 3669–3675 (1982).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Kremer, F. & Schönhals, A. Broadband Dielectric Spectroscopy (Springer Science & Enterprise Media, 2002).

  • Supply

    Leave a Comment