Gate-defined Josephson junctions in magic-angle twisted bilayer graphene

  • 1.

    Saito, Y., Nojima, T. & Iwasa, Y. Extremely crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    Article 

    Google Scholar 

  • 2.

    Caviglia, A. D. et al. Electrical discipline management of the LaAlOthree/SrTiOthree interface floor state. Nature 456, 624–627 (2008).

    CAS 
    Article 

    Google Scholar 

  • three.

    Kononov, A. et al. One-dimensional edge transport in few-layer WTe2. Nano Lett. 20, 4228–4233 (2020).

    CAS 
    Article 

    Google Scholar 

  • Four.

    Li, G. et al. Commentary of van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article 

    Google Scholar 

  • 5.

    Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in barely twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article 

    Google Scholar 

  • 6.

    Bistritzer, R. & MacDonald, A. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 

    Google Scholar 

  • 7.

    Nam, N. N. T. & Koshino, M. Lattice rest and vitality band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article 

    Google Scholar 

  • eight.

    Guinea, F. & Walet, N. R. Continuum fashions for twisted bilayer graphene: impact of lattice deformation and hopping parameters. Phys. Rev. B 99, 205134 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Nuckolls, Ok. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Josephson, B. Potential new impact in superconducting tunneling. Phys. Lett. 1, 251–253 (1962).

    Article 

    Google Scholar 

  • 16.

    Shapiro, S. Josephson currents in superconducting tunneling: the impact of microwaves and different observations. Phys. Rev. Lett. 11, 80–82 (1963).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Tinkham, M. Introduction to Superconductivity (Courier, 2004).

  • 18.

    Braginski, A. I. Superconductor electronics: standing and outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Wendin, G. Quantum info processing with superconducting circuits: a overview. Rep. Progr. Phys. 80, 106001 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Liu, X. & Hersam, M. C. 2D supplies for quantum info science. Nat. Rev. Mater. Four, 669–684 (2019).

    Article 

    Google Scholar 

  • 21.

    Li, C., Guéron, S., Chepelianskii, A. & Bouchiat, H. Full vary of proximity impact probed with superconductor/graphene/superconductor junctions. Phys. Rev. B 94, 115405 (2016).

    Article 

    Google Scholar 

  • 22.

    Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 10, 761–764 (2015).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Xie, M. & MacDonald, A. H. Weak-field Corridor resistivity and spin/valley taste symmetry breaking in MAtBG. Preprint at https://arxiv.org/abs/2010.07928 (2020).

  • 24.

    Mortensen, N. A., Flensberg, Ok. & Jauho, A.-P. Angle dependence of Andreev scattering at semiconductor–superconductor interfaces. Phys. Rev. B 59, 10176–10182 (1999).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Uri, A. et al. Mapping the twist-angle dysfunction and Landau ranges in magic-angle graphene. Nature 581, 47–52 (2020).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii–Kosterlitz–Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Olyaei, H. Z., Amorim, B., Ribeiro, P. & Castro, E. V. Ballistic cost transport in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2007.14498 (2020).

  • 28.

    Bocquillon, E. et al. Gapless Andreev sure states within the quantum spin Corridor insulator HgTe. Nat. Nanotechnol. 12, 137–143 (2017).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Nanda, G. et al. Present-phase relation of ballistic graphene Josephson junctions. Nano Lett. 17, 3396–3401 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Virtanen, P., Heikkilä, T. T., Bergeret, F. S. & Cuevas, J. C. Concept of microwave-assisted supercurrent in diffusive SNS junctions. Phys. Rev. Lett. 104, 247003 (2010).

    Article 

    Google Scholar 

  • 31.

    Moshe, M., Kogan, V. G. & Mints, R. G. Edge-type Josephson junctions in slender thin-film strips. Phys. Rev. B 78, 020510 (2008).

    Article 

    Google Scholar 

  • 32.

    Rodan-Legrain, D. et al. Extremely tunable junctions and non-local Josephson impact in magic-angle graphene tunnelling units. Nat. Nanotechnol. https://doi.org/10.1038/s41565-Zero21-00894-Four (2021)

  • 33.

    Kim, Ok. et al. Van der Waals heterostructures with excessive accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Orlando, T. P. & Delin, Ok. A. Foundations of Utilized Superconductivity (Addison Wesley, 1991).

  • 36.

    Russer, P. Affect of microwave radiation on present–voltage attribute of superconducting weak hyperlinks. J. Appl. Phys. 43, 2008–2010 (1972).

    Article 

    Google Scholar 

  • 37.

    Le Calvez, Ok. et al. Joule overheating poisons the fractional ac Josephson impact in topological Josephson junctions. Commun. Phys. 2, Four (2019).

    Article 

    Google Scholar 

  • 38.

    de Vries, F. Ok. et al. Knowledge repository: Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. https://doi.org/10.3929/ethz-b-000463616 (2021).

  • 39.

    Efros, A. L. & Shklovskii, B. I. Coulomb hole and low temperature conductivity of disordered programs. J. Phys. C Stable State Phys. eight, L49–L51 (1975).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Ingold, G.-L. & Nazarov, Y. V. Cost Tunneling Charges in Ultrasmall Junctions, 21–107 (Springer, 1992).

  • Supply

    Leave a Comment