Highly tunable junctions and non-local Josephson effect in magic-angle graphene tunnelling devices

  • 1.

    Tinkham, M. Introduction to Superconductivity 2nd edn (Dover Publications, 2004).

  • 2.

    Likharev, Okay. Okay. Superconducting weak hyperlinks. Rev. Mod. Phys. 51, 101–159 (1979).

    Article 

    Google Scholar 

  • three.

    Oliver, W. D. & Welander, P. B. Supplies in superconducting quantum bits. MRS Bull. 38, 816–825 (2013).

    CAS 
    Article 

    Google Scholar 

  • four.

    Larsen, T. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Wang, J. I.-J. et al. Coherent management of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 
    Article 

    Google Scholar 

  • eight.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Li, G. et al. Commentary of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article 

    Google Scholar 

  • 11.

    Surez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in barely twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article 

    Google Scholar 

  • 12.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Continuum mannequin of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article 

    Google Scholar 

  • 14.

    Kim, Okay. et al. van der Waals heterostructures with excessive accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Kim, Okay. et al. Tunable moiré bands and powerful correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Nam, N. N. T. & Koshino, M. Lattice leisure and power band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article 

    Google Scholar 

  • 18.

    Pearl, J. Present distribution in superconducting movies carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964).

    Article 

    Google Scholar 

  • 19.

    Moshe, M., Kogan, V. G. & Mints, R. G. Edge-type Josephson junctions in slim thin-film strips. Phys. Rev. B 78, 020510 (2008).

    Article 

    Google Scholar 

  • 20.

    Ivanchenko, Y. M. & Soboleva, T. Okay. Nonlocal interplay in Josephson junctions. Phys. Lett. A 147, 65–69 (1990).

    Article 

    Google Scholar 

  • 21.

    Boris, A. A. et al. Proof for nonlocal electrodynamics in planar Josephson junctions. Phys. Rev. Lett. 111, 117002 (2013).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Abdumalikov, A. A., Alfimov, G. L. & Malishevskii, A. S. Nonlocal electrodynamics of Josephson vortices in superconducting circuits. Supercond. Sci. Technol. 22, 023001 (2009).

    Article 

    Google Scholar 

  • 23.

    Clem, J. R. Josephson junctions in skinny and slim rectangular superconducting strips. Phys. Rev. B 81, 144515 (2010).

    Article 

    Google Scholar 

  • 24.

    Kogan, V. G., Dobrovitski, V. V., Clem, J. R., Mawatari, Y. & Mints, R. G. Josephson junction in a skinny movie. Phys. Rev. B 63, 144501 (2001).

    Article 

    Google Scholar 

  • 25.

    Rosenthal, P. A., Beasley, M. R., Char, Okay., Colclough, M. S. & Zaharchuk, G. Flux focusing results in planar thin-film grain-boundary Josephson junctions. Appl. Phys. Lett. 59, 3482–3484 (1991).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Nagata, S., Yang, H. C. & Finnemore, D. Okay. Oscillations within the temperature dependence of Josephson supercurrents in SNS junctions. Phys. Rev. B 25, 6012–6014 (1982).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 10, 761–764 (2015).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Ben Shalom, M. et al. Quantum oscillations of the important present and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article 

    Google Scholar 

  • 29.

    Efros, A. L. & Shklovskii, B. I. Coulomb hole and low temperature conductivity of disordered methods.J. Phys. C eight, L49–L51 (1975).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Lee, M., Massey, J. G., Nguyen, V. L. & Shklovskii, B. I. Coulomb hole in a doped semiconductor close to the metal-insulator transition: tunneling experiment and scaling ansatz. Phys. Rev. B 60, 1582–1591 (1999).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Altshuler, B. L. & Aronov, A. G. Zero bias anomaly in tunnel resistance and electron-electron interplay. Strong State Commun. 88, 1033–1035 (1993).

    Article 

    Google Scholar 

  • 32.

    Gershenzon, M. E., Gubankov, V. N. & Falei, M. I. Tunnel spectroscopy of the electron-electron interplay in disordered aluminum movies. Sov. Phys. JETP 63, 1287–1294 (1986).

    Google Scholar 

  • 33.

    Kotel’nikov, I. N., Dizhur, S. E., Morozova, E. N., Devyatov, E. V. & Dolgopolov, V. T. Zero-bias tunneling anomaly in a two-dimensional electron system with dysfunction. JETP Lett. 96, 577–581 (2013).

    Article 

    Google Scholar 

  • 34.

    Ihn, T. et al. Graphene single-electron transistors. Mater. As we speak 13, 44–50 (2010).

    CAS 
    Article 

    Google Scholar 

  • 35.

    de Vries, F. Okay. et al. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. https://doi.org/10.1038/s41565-Zero21-00896-2 (2021).

  • 36.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    CAS 
    Article 

    Google Scholar 

  • Supply

    Leave a Comment